COVID-19: Target Selection

  • Igor Klepikov
Keywords: COVID-19, pneumonia, adaptation, lungs, inflammation

Abstract

It is necessary to revive the old concept of "norm in pathology," which meant that there are deviations that reflect its adaptation to new conditions in the case of a disease in the body. Such shifts up to a certain limit are a positive phenomenon and do not require correction. It is necessary to adopt a general scheme of the relationship and sequence of these reactions and mechanisms in the pathogenesis of inflammatory transformation of lung tissue instead of ephemeral dependence on the pathogen.

References

REFERENCES:
1. Severe acute respiratory syndrome. https://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome
2. Middle East respiratory syndrome. https://en.wikipedia.org/wiki/Middle_East_respiratory_syndrome
3. Schaye VE, Reich JA, Bosworth BP et al. Collaborating Across Private, Public, Community, and Federal Hospital Systems: Lessons Learned from the Covid-19 Pandemic Response in NYC. NEJM Catalyst Innovations in Care Delivery 2020; 06, 1, 6, November — December 2020. doi: https://doi.org/10.1056/CAT.20.0343
4. Metlay JP, Waterer GW, Long AC at al.; on behalf of the American Thoracic Society and Infectious Diseases Society of America. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. American Journal of Respiratory and Critical Care Medicine 2019; 200, 7, 1, e45-e67. https://www.atsjournals.org/doi/full/10.1164/rccm.201908-1581ST
5. Klepikov I. How many pneumonias exist in nature? Eur J Clin Microbiol Infect Dis. 2020. https://doi.org/10.1007/s10096-020-03834-7
6. Heneghan C, Pluddemann A, Mahtani KR (2020). Differentiating viral from bacterial pneumonia. April 8, 2020. The Centre for Evidence-Based Medicine. Evidence Service to support the COVID-19 response. University of Oxford. https://www.cebm.net/covid-19/differentiating-viral-from-bacterial-pneumonia.
7. Kamat IS, Ramachandran V, Eswaran H, Guffey D, Musher DM. (2020). Procalcitonin to Distinguish Viral from Bacterial Pneumonia: A Systematic Review and Meta-analysis. Clin Infect Dis 2020; 16, 70(3): 538-542. doi: 10.1093/cid/ciz545. PMID: 31241140.
8. Zelba H, Worbs D, Harter J et al. A Highly Specific Assay for the Detection of SARS-CoV-2–Reactive CD4+ and CD8+ T Cells in COVID-19 Patients. The Journal of Immunology 2021; 1, 206 (3): 580-587. doi: 10.4049/jimmunol.2000811
9. Dzau VJ, Balatbat C. Strategy, coordinated implementation, and sustainable financing needed
for COVID-19 innovations. The Lancet Journal 2020; 396, 10261: 1463-1534, e73-e82. doi: https://doi.org/10.1016/S0140-6736(20)32289-3
10. Bohn MK, Hall A, Sepiashvili L et al. Pathophysiology of COVID-19: Mechanisms Underlying Disease Severity and Progression. Physiology 2020; 35, 5: 288-301.
11. Cheepsattayakorn A, Cheepsattayakorn R. Pathogenesis and Pulmonary Pathology in SARS-CoV-2 (COVID-19) Host Cell Invasion. Acta Scientific Microbiology 2020; 3.11: 01-02.
12. Attaway AH, Scheraga RG, Bhimraj A. Severe covid-19 pneumonia: pathogenesis and clinical management. BMJ, 2021; 372: n436. doi:10.1136/bmj.n436
13. Grant RA, Morales-Nebreda L, Markov NS et al. Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature, 2021. https://doi.org/10.1038/s41586-020-03148-w
14. Zhou B, Kojima S, Kawamoto A, Fukushima M. COVID‐19 pathogenesis, prognostic factors, and treatment strategy: Urgent recommendations. J Med Virol. 2021; 1– 11. doi:10.1002/jmv.26754
15. Loo J, Spittle DA, Newnham M. (2021). COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax 2021; 76: 412-420.
16. Stenmark KR, Frid MG, Gerasimovskaya E et al. Mechanisms of SARS-CoV-2-induced lung vascular disease: potential role of complement. Pulmonary Circulation, 2021; 11(2): 1–14. doi: https://doi.org/10.1177/20458940211015799
17. El‐Shimy IA, Mohamed MM, Hasan SS, Hadi MA. Targeting host cell proteases as a potential treatment strategy to limit the spread of SARS‐CoV‐2 in the respiratory tract. Pharmacol Res Perspect. 2021; 9: e00698. doi:10.1002/prp2.698
18. Farah H, et al. Potential Anti-Inflammatory Approaches for the Management of SARS-CoV2 Infections. J Pulmon Respir Sci 2020; 5(S1): 000S1-001.
19. Ahmed I. Siddiqi. Cytokine flames of COVID-19. J. Archives of Medical Case Reports and Case Study 2020; 3(2). doi:10.31579/2692-9392/014
20. Mo Shehata. Covid-19; The Possible Medical Strategies. EC Pulmonology and Respiratory Medicine 9.6 2020: 03-07.
21. Cytokine Storm -to the Editor. (2021). April 22, 2021. N Engl J Med 2021; 384: e59. doi:10.1056/NEJMc2036236
22. Caramaschi S, Kapp ME, Miller SE et al. (2021). Histopathological findings and clinicopathologic correlation in COVID-19: a systematic review. Mod
Pathol. 2021. https://doi.org/10.1038/s41379-021-00814-w
23. Cytokine. https://en.wikipedia.org/wiki/Cytokine
24. Hülya Çiçek., et al. Serum Cytokine Profiles in Patients with Psoriasis. Acta Scientific Medical Sciences 2021; 5.5: 13-22.
25. Klepikov I. Acute Pneumonia is More Cardiovascular than Respiratory Disaster. J Emerg Med Care 2018; 1(1): 105
26. Schwiegk, H. Der Lungenentlastungsreflex. Pflügers Arch. Ges. Physiol 1935; 236, 206–219.
27. Thillai M, Patvardhan C, Swietlik EM, et al. Functional respiratory imaging identifies redistribution of pulmonary blood flow in patients with COVID-19. Thorax, 2021; 76: 182-184.
28. Renin–angiotensin system. https://en.wikipedia.org/wiki/Renin%E2%80%93angiotensin_system
29. Amraei R, Rahimi N. COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Cells 2020; 9(7):1652. doi: 10.3390/cells9071652.
30. Malha L, Mueller FB, Pecker MS, Mann SJ, August P, Feig PU. COVID-19 and the Renin-Angiotensin System. Kidney Int Rep. 2020; 5(5): 563-565. doi:10.1016/j.ekir.2020.03.024.
31. Wiese OJ, Allwood BW, Zemlin AE. COVID-19 and the renin-angiotensin system (RAS): A spark that sets the forest alight? Med Hypotheses. 2020, 144: 110231. doi:10.1016/j.mehy.2020.110231
32. Aleksova A, Ferro F, Gagno G, Cappelletto C, Santon D, Rossi M, Ippolito G, Zumla A, Beltrami AP, Sinagra G. COVID-19 and renin-angiotensin system inhibition: role of angiotensin converting enzyme 2 (ACE2) - Is there any scientific evidence for controversy? J Intern Med 2020; 288(4): 410-421. doi: 10.1111/joim.13101
33. Franz H. Messerli, George CM Siontis, Emrush Rexhaj. COVID-19 and Renin Angiotensin Blockers. Current Evidence and Recommendations. Circulation. 2020; 141: 2042–2044. doi: 10.1161/CIRCULATIONAHA.120.047022
34. D. Clark Files, Kevin W. Gibbs, Christopher L. Schaich et al. A Pilot Study to Assess the Circulating Renin-Angiotensin-System in COVID-19 Acute Respiratory Failure. American Journal of Physiology-Lung Cellular and Molecular Physiology 2021. https://doi.org/10.1152/ajplung.00129.2021
35. Christiansen CF, Pottegård A, Heide-Jørgensen U, et al. SARS-CoV-2 infection and adverse outcomes in users of ACE inhibitors and angiotensin-receptor blockers: a nationwide case-control and cohort analysis. Thorax 2021; 76: 370-379.
36. Kadakia KT, Beckman A.L, Ross JS. Leveraging Open Science to Accelerate Research; 2021. doi: 10.1056/NEJMp2034518
37. Klepikov I. Acute Pneumonia in Modern Healthcare and in the History of Medicine. Annals of Biological Research 2021; 12 (3): 31-34
38. Klepikov I. Acute pneumonia. New doctrine and first treatment results. Lambert Academic; 2020. Link: https://bit.ly/3uGDKhY
39. Huttner BD, Catho G, Pano-Pardo JR et al. COVID-19: don't neglect antimicrobial stewardship principles! Clinical Microbiology and Infection 2020; 26, 7: 808-810. doi:https://doi.org/10.1016/j.cmi.2020.04.024
40. Beović B, Doušak M, Ferreira-Coimbra J et al. Antibiotic use in patients with COVID-19: a ‘snapshot’ Infectious Diseases International Research Initiative (ID-IRI) survey. Journal of Antimicrobial Chemotherapy 2020; dkaa326. doi:https://doi.org/10.1093/jac/dkaa326
41. Rawson TM, Moore LSP, Zhu N, et al. Bacterial and fungal co-infection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing [published online ahead of print, 2020 May 2]. Clin Infect Dis 2020; ciaa530. doi:10.1093/cid/ciaa530
42. Kim D, Quinn J, Pinsky B et al. Rates of co-infection between SARS-CoV-2 and other respiratory pathogens. JAMA 2020; 323: 2085–6.
43. Guggenbichler S, Fey T and Guggenbichler JP Dramatic Increase of Multiresistant Microorganisms We are approaching the Postantibiotic Era? Integ Biomed Sci 2020; 6(1): 74-83.
44. Ocampo-Torres Moisés, et al. Characterization of Mortality by Covid-19 in a Health System in Central Mexico”. EC Pulmonology and Respiratory Medicine 2020; 9.12: 20-22
45. Alejandro David Bendala Estrada, Jorge Calderón Calderón Parra, Eduardo Fernández Carracedo et al. Inadequate Use of Antibiotics in the Covid-19 Era: Effectiveness of Antibiotic Therapy 2021; PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-244297/v1
Published
2021-06-21
How to Cite
Klepikov, I. (2021). COVID-19: Target Selection. Journal of SARS-CoV-2 Research, 1, 13 - 18. https://doi.org/10.36013/sarc-cov-2.v1i.65
Section
Articles