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Abstract: Hypoxia often occurs in cancer and helps the cells in adapting different responses than 
normal cells, such as the activation of signaling pathways which regulate proliferation, angiogenesis, 
and cell death. Moreover, there are a number of genes that are known to be associated with these 
mentioned processes and functions. In this study, our goal was to understand the impact of alteration 
in the expression of hypoxia and immune system-related genes and their contribution to breast cancer. 
For this purpose, we have collected the hypoxia-associated genes based on the literature related to 
diverse biological processes and functions. For all these genes, we have studied the survival analysis, 
breast cancer gene expression profiling, and relevant hypoxic gene alterations. Based on our study, we 
concluded that there are 17 critical pathways and 40 genes from the hypoxic gene list that appear to 
play major roles in the case of breast cancer and overall, we observed that immune signaling pathways 
and its components are highly altered in cases of breast cancer. Among the top ranked hallmarks of 
molecular signatures are apoptosis, hypoxia, DNA repair, E2F targets, MYC targets, androgen and 
estrogen response, and TNFa signaling. 
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INTRODUCTION  Almost all cancers are known to be highly 
heterogeneous in nature and breast cancer is also one of 
them which has many clinical outcomes and for this 
cancer initial surgery, adjuvant chemotherapy, and 
endocrine therapy are available as therapeutic options. 
However, breast cancer patients still have a risk of 
recurrence [1-4]. Keeping in the views of its nature of 
heterogeneity and complexity of therapeutic intervention, 
the promising field of biomarker research mainly focuses 

on the identification of factors predicting long-term 
relapse-free survival in breast cancer survivors. Clinical 
evidence from previous studies has demonstrated that 
tumor hypoxia may play an important role in breast cancer 
and these hypoxic tumors are related to poor prognosis 
and survival [5-7]. When the availability of intravascular 
oxygen content in tumors becomes lower than the 
metabolic requirements of cancer cells, a hypoxic 
condition arises. Several families of transcription factors 
called hypoxia-inducible factors (HIFs) are adapted by 
hypoxic tumor cells. The first member of this transcription 
factor family, HIF-1 which is universally expressed and 
under normoxic environments it is hydroxylated by 
propyl-hydroxylases (PHD) [8], which ultimately leads to 
its degradation. Alternatively, in hypoxic conditions, it is 
not degraded and instead translocates into the nucleus 
and where binds with the subunit HIF-1 beta and the 
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transcriptional coactivator p300. This complex regulates 
the expression of multiple genes through hypoxia 
response elements (HRE) [9,10]. Previously, it was 
demonstrated that dysfunctions of the PI3K/AKT and 
RAS/MAPK signaling pathways lead to the regulation of 
HIF-1 alpha and genetic alterations are also occurring such 
as activation of oncogenes (HER2) and/or loss of tumor 
suppressor genes (VHL or PTEN). It is also known that 
hypoxia-related genes play critical roles in tumor 
progression because these genes are involved in several 
cellular processes which include cell differentiation, 
survival, angiogenesis, migration, and metastasis. A 
similar study showed that HER2+ breast cancer cells 
harbored high amplification of HER genes compared to 
HER2- breast cancer cells [11]. The observed 
overexpression of NHERF1 led to the progression of high-
grade tumors and increased expression of HIF-1 alpha 
protein in hypoxic breast cancer cells. PHD2 encodes the 
dioxygenase and catalyzes the post-translational 
hydroxylation of HIF-1 alpha protein under normoxia. 
During hypoxic conditions, PHD2 expression is enhanced, 
thus increased levels of PHD2 are associated with relapse 
and tumor metastasis. Similarly, the expression of PGK1 
was also observed to be enhanced in hypoxic breast 
cancer conditions. During metabolism, these tumor cells 
significantly expressed six genes, 
PGK1, LDHA, TPI, ENO1, EPO, and ETS1. These markers 
were overexpressed in the relapse group compared with 
the non-relapse group because these genes are involved 
in glucose metabolism and affect the implication of HIF 
factors in glucose metabolism of tumor cells. In hypoxic 
conditions, cancer cells redirect their aerobic metabolism 
to anaerobic metabolism by activating glycolysis, which 
becomes the main source of energy. Expression of lactate 
dehydrogenase A (LDHA) is increased leading to increased 
ATP production, cell proliferation and conversion of 
pyruvate into lactate under hypoxia. The lactate is 
absorbed and used as a respiratory substrate for 
promoting angiogenesis and metastasis and regulates the 
HRE elements. Moreover, HRE elements are also 
identified in the promoter of EST1 and are involved in its 
transcriptional activation under hypoxic conditions and 
increase the risk of invasive breast cancer.  
 

The gene expression profiling by microarray is a powerful 
tool for cancer biomarker discovery and facilitates the 
correlation of expression profiles with clinical outcomes in 
both prospective and retrospective studies. Previously, a 
molecular signature specific to hypoxia responses in 
breast cancer was defined and was associated with tumor 
aggressiveness and the risk of recurrence.  
 

The identification of global expression analysis of multiple 
genes and pathways might conquer most of the 
limitations of current markers and other detection 
methods responsive to hypoxia. The gene expression 
analysis of hypoxia genes also has the potential to imitate 
the complexity of the tumor. Thus, expression analysis can 
be used to reveal the nature of the hypoxic response to a 
specific therapy in terms of gene networks and therefore,  
may be helpful to improve our understanding of 
mechanisms of resistance and may provide potential 
value of the risk score of relapse following specific 
therapies. 
 

Our study is distinctive from others, as we collected the 
hypoxia and immune system-related genes associated 
with diverse biological processes and hallmarks of 
molecular signatures (MsigDB [5,12-17]. For all these 
genes, we have studied the survival analysis. In this 
analysis, we have considered the genes induced by 
hypoxia for these categories: oxygen transport and iron 
metabolism, angiogenesis, glycolysis, and glucose uptake, 
transcription factors, metabolism/pH/neurotransmitters, 
growth factors and cytokines, stress-response pathways, 
cell adhesion, ECM, cytoskeleton, and 
proteases/coagulation. 
 

In addition to investigating the survival analysis, gene 
expression profiling and relevant hypoxia gene alterations 
in breast cancer were also studied. Based on our study, we 
concluded that there are 17 critical pathways and 40 
genes which appear to play major roles in breast cancer in 
terms of hypoxia and its association. We also concluded 
that immune signaling pathways and its components are 
highly altered in cases of breast cancer followed by their 
hallmarks of molecular signatures. 
 

Methods: For this study, the dataset used for gene 
expression is GSE42568 for breast cancer which we have 
obtained from GEO (Gene Expression Omnibus) where the 
dataset contains normal samples (17) and tumor samples 
(104). These gene expression profiling datasets were 
generated from the Affymetrix Human Genome U133 Plus 
2.0 Array. This dataset consists of 104 breast cancer 
biopsies (removed prior to any treatment with tamoxifen 
or chemotherapeutic agents) from patients aged between 
31 years and 89 years at the time of diagnosis (mean age 
= 58 years). Twenty were less than 50 years old and 
seventy-seven women were 50 years or older at diagnosis. 
For this work, we classified samples as either tumor or 
normal samples irrespective of the age, 
treatment/therapy, or duration of treatment [18]. 
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For differential gene expression analysis, we have 
compared the tumor samples with normal samples to 
generate the DEGs list. In short, the basic steps involved 
are raw file (.CEL) processing, intensity calculation, and 
normalization. For normalization [25-27], GCRMA [25,28-
31]. RMA, and EB are the most commonly used 
approaches. Here, we have used EB for raw intensity 
normalization. After normalization, we analyzed gene 
expression patterns [25,26, 32-36] and its inferred 
functions [34,35].  
 

For differential gene expression prediction and statistical 
analysis, MATLAB functions (e.g., mattest) was used. For 
pathway analysis, we used KEGG [38] database and had 
our code designed to the pathway and the network 
analysis.  
 

For generating DEGs network, FunCoup2.0 [39] was used 
for all the networks throughout the work and cytoscape 
[40] was used for network visualization. For most of our 
coding and calculations, MATLAB was used. FunCoup2.0 
predicts four different classes of functional coupling or 
associations, such as protein complexes, protein-protein 
physical interactions, metabolic, and signaling pathways 
[41]. For hallmarks of molecular signatures analysis, we 
used MSigDB v7 [16]. 
 

RESULTS   
Hypoxic genes and gene expression profiling reveal 
critical genes and the pathways associated with breast 
cancer 
We studied the gene expression profiling by using the 
publicly available dataset from gene expression omnibus 
(GEO) GSE4256 [18]. This dataset contained 17 normal 
samples and 104 tumor samples (total human 

samples=121). We performed differential gene expression 
profiling and functional annotation for the differentially 
expressed genes (DEGs) and compared them with the list 
of hypoxic genes. We observed that there are 40 hypoxic 
genes (out of 185 genes) which are differentially 
expressed in the case of breast cancer (Figure 1a). Since 
we had a large number of DEGs (4664 DEGs) at +/- 2.0 fold 
change, we grouped the list of genes up to +/- 7.0 fold 
changes. We observed that even at +/- 7.0 fold change the 
number of DEGs was 376 and similarly, in the case of 
pathway enrichment analysis, we saw that the number of 
enriched pathways has been reduced from 142 to 17 
(Figure 1b and 1c). Based on this result, we concluded that 
there are a large number of hypoxic genes that are 
associated with breast cancer and irrespective of the fold 
change, the set of pathways is always enriched or altered 
in cases of breast cancer.  
 

Seventeen pathways are dominantly altered as a result 
of breast cancer development 
As mentioned above, 17 pathways are always enriched or 
altered in the case of breast cancer (Figure 2a). Since the 
p-values were infinitesimally small for many pathways at 
different fold changes, we converted the p-values into -
10*log10(p-values). The p-values may be interpreted by 
color, as blue represents ≥0.05 and red represents p-
values ≤1e-22.  
 

In addition, we used a network database to map out the 
links between the hypoxic genes which are differentially 
expressed for of breast cancer samples. We observed that 
XRCC6, CDK2, CDK6, PRKCA, ENO1, ACAT1, CDKN1A, and 
HYOU1 are the genes which show very high connectivity. 
Furthermore, we noted that there are several genes which 
are not connected with any gene (Figure 2b). 

 

Figure 1: Hypoxic genes and gene expression profiling. (a) Venn diagram represents the common genes between the 
list of hypoxic genes and the DEGs. Here, the overall DEGs have been compared to the list of hypoxic genes collected 
from previous works (b) Number of DEGs at six different fold changes (from +/- 2 to +/- 7), and (c) the number of 
pathways at six different fold changes (from +/- 2 to +/- 7). 
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Differentially expressed hypoxic genes and their role in 
breast cancer 
In the previous work, role of hypoxic genes have been 
explored and discussed in cancer [19,20]. Figure 1a 
represents the common genes between hypoxia and the 
DEGs. Further, we analyzed the gene expression pattern 
of these genes in normal samples and breast cancer tumor 
samples (Figure 3a). We noted that there is a significant 
difference in the expression pattern of hypoxic genes in 
normal samples compared to the tumor samples. As far as 
the clinical relevance is concerned, we found that only 
three genes (CD99, SAT1, and ADAM22) do not have 
significant p-values in the case of survival analysis in terms 
of overexpression (Figure 3b). 
 

Immune signaling pathways are dominantly affected in 
case of breast cancer with respect to all other enriched 
pathways 
For understanding the role of immune signaling pathways, 
we analyzed the genes which belong to the 17 enriched 
pathways shown previously (377 for FC > 7.0 and FC < -
7.0). 312 genes belong to the following: cytokine-cytokine 
receptor interaction, T-cell receptor signaling pathways, 
cGMP-PKG signaling pathways, Natural killer cell-
mediated cytotoxicity, and TNF signaling pathways (Figure 
4), while there are only 39 genes which belong to the 
remaining pathways (Figure 2a).From these 39 genes,  

 
there are a number of genes that are common to these  
pathways. Therefore, based on this analysis, we 
concluded that immune signaling pathways and their 
components are highly altered in cases of breast cancer. 
 

We have also presented a list of the hallmarks of 
molecular signatures in Table 1 where there are a large 
number of molecular signatures including hypoxia, 
apoptosis, cell cycle, and immune signaling components 
and their p-values are extremely low (5.42E-20) leading to 
its high significance. Based on this study, we concluded 
that both the KEGG enriched pathways and enriched 
hallmarks of molecular signatures are of extreme 
significance in terms of clinical perspective. 
 

DISCUSSION  Using the publicly available dataset, we 
investigated the gene expression profile for breast cancer. 
The current literature has focused on selected genes and 
pathways or provided a generalized view. Here we have 
investigated the list of hypoxic genes, critical pathways, 
and the genes which appear to be clinically highly 
significant in breast cancer. CXCR4, IGF1, HYOU1, ADRA2A, 
ETV2, NFKBIZ, SPP1, VEGFA, TGFB1, MAPK1, MDM2, 
ENPEP, CDK2, ENO1 are among the top-ranked genes 
which appeared highly significant in terms of patient 
survival and were associated with hypoxia in breast 
cancer. Our work may aid in diagnosing breast cancer  

 
Figure 2: Pathways enriched as a result of differential gene expression profiling. (a) The 17 enriched pathways are 
enriched for all the six ranges of fold changes. (b) The network of hypoxic DEGs. The list hypoxic genes differentially 
expressed. 
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Table 1: Enriched hallmarks signatures and their p-values 

HALLMARK_ADIPOGENESIS 5.42E-20 

HALLMARK_ALLOGRAFT_REJECTION 5.42E-20 

HALLMARK_ANDROGEN_RESPONSE 5.42E-20 

HALLMARK_APICAL_JUNCTION 5.42E-20 

HALLMARK_APOPTOSIS 5.42E-20 

HALLMARK_COAGULATION 5.42E-20 

HALLMARK_COMPLEMENT 5.42E-20 

HALLMARK_DNA_REPAIR 5.42E-20 

HALLMARK_E2F_TARGETS 5.42E-20 

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 5.42E-20 

HALLMARK_ESTROGEN_RESPONSE_LATE 5.42E-20 

HALLMARK_G2M_CHECKPOINT 5.42E-20 

HALLMARK_GLYCOLYSIS 5.42E-20 

HALLMARK_HEME_METABOLISM 5.42E-20 

HALLMARK_HYPOXIA 5.42E-20 

HALLMARK_IL2_STAT5_SIGNALING 5.42E-20 

HALLMARK_INFLAMMATORY_RESPONSE 5.42E-20 

HALLMARK_INTERFERON_GAMMA_RESPONSE 5.42E-20 

HALLMARK_KRAS_SIGNALING_DN 5.42E-20 

HALLMARK_KRAS_SIGNALING_UP 5.42E-20 

HALLMARK_MITOTIC_SPINDLE 5.42E-20 

HALLMARK_MTORC1_SIGNALING 5.42E-20 

HALLMARK_MYC_TARGETS_V1 5.42E-20 

HALLMARK_MYOGENESIS 5.42E-20 

HALLMARK_OXIDATIVE_PHOSPHORYLATION 5.42E-20 

HALLMARK_P53_PATHWAY 5.42E-20 

HALLMARK_PI3K_AKT_MTOR_SIGNALING 5.42E-20 

HALLMARK_PROTEIN_SECRETION 5.42E-20 

HALLMARK_SPERMATOGENESIS 5.42E-20 

HALLMARK_TNFA_SIGNALING_VIA_NFKB 5.42E-20 

HALLMARK_UNFOLDED_PROTEIN_RESPONSE 5.42E-20 

HALLMARK_UV_RESPONSE_DN 5.42E-20 

HALLMARK_UV_RESPONSE_UP 5.42E-20 

HALLMARK_XENOBIOTIC_METABOLISM 5.42E-20 

HALLMARK_FATTY_ACID_METABOLISM 1.56E-16 

HALLMARK_IL6_JAK_STAT3_SIGNALING 2.81E-15 

HALLMARK_PEROXISOME 7.65E-13 

HALLMARK_BILE_ACID_METABOLISM 1.15E-11  
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patients, as we have presented the differentially 
expressed genes, their inferred pathways, and the clinical 
impact of the selective hypoxic genes. Furthermore, we 
noted that immune signaling pathways and their 
components are highly altered in breast cancer, which 
also supports that the immune system is a major 
therapeutic target point [21-24]. 
 

Hypoxia often occurs in cancer and such occurrence 
allows the cells to adapt to different responses compared 
to normal cells, such as the activation of signaling 
pathways which regulate proliferation, angiogenesis, and 
cell death. There are a large number of genes that are 
known to be associated with diverse biological processes 
and their control and coordination in hypoxia response 
differs between cancer types. In this study, our goal was 
to understand the impact of alteration of the expression 
of hypoxia-related genes and survival in breast cancer.  
It is known that breast cancer is a heterogeneous disease 
that has many clinical outcomes in which therapeutic  

 
options such as initial surgery, adjuvant chemotherapy, 
and endocrine therapy are available, but breast cancer 
patients still have a risk of relapse. An important, 
promising field is biomarker research or discovery (which 
means identification of factors predicting long-term 
relapse-free survival in breast cancer survivors). As 
mentioned, there are many molecular signatures 
including hypoxia, apoptosis, cell cycle, and immune 
signaling components that are highly significant. Based on 
this study, we concluded that both the KEGG enriched 
pathways and enriched hallmarks of molecular signatures 
are extremely significant in terms of clinical perspective. 
 

The combined study of hypoxic genes and the gene 
expression profiling in breast cancer may help in terms of 
diagnostic purpose and clinical relevance. Here, we have 
not only analyzed the hypoxic genes but also the overall 
gene expression profile and the major pathways which are 
enriched at a very high threshold of fold changes. These 
pathways are cytokine signaling, TNF signaling, NK cell-
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mediated cytotoxicity, adrenergic signaling, AKT, MAPK, 
oxidative phosphorylation, and more. These 17 pathways 
(Figure 2a) not only are known to be associated with 
cancer but also other diseases including infection and 
inflammation.  
 

CONCLUSION For all hypoxic differentially expressed 
genes, we have studied the survival analysis, gene  

 expression profiling, and relevant hypoxic gene 
alterations in breast cancer. Based on our study, we 
conclude that there are 17 critical pathways and 40 genes 
which appear to play major roles in breast cancer 
associated with hypoxia and immune signaling pathways 
and their components appear to be the leading source of 
aberration in terms of gene expression.
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